Rational Parameter Rays of the Mandelbrot

نویسنده

  • Dierk Schleicher
چکیده

| We give a new proof that all external rays of the Man-delbrot set at rational angles land, and of the relation between the external angle of such a ray and the dynamics at the landing point. Our proof is diierent from the original one, given by Douady and Hubbard and reened by Lavaurs, in several ways: it replaces analytic arguments by combinatorial ones; it does not use complex analytic dependence of the polynomials with respect to parameters and can thus be made to apply for non-complex analytic parameter spaces; this proof is also technically simpler. Finally, we derive several corollaries about hyperbolic components of the Mandelbrot set. Along the way, we introduce partitions of dynamical and parameter planes which are of independent interest, and we interpret the Man-delbrot set as a symbolic parameter space of kneading sequences and internal addresses. R esum e (Rayons externes a arguments rationnels de l'en-semble de Mandelbrot). | Nous donnons une nouvelle d emonstra-tion que tous les rayons externes a arguments rationnels de l'ensemble Mandelbrot aboutissent, et nous montrons la relation entre l'argument externe d'un tel rayon et la dynamique au param etre o u le rayon aboutit. Notre d emonstration est dii erente de l'originale, donn ee par Douady et Hubbard et elabor ee par Lavaurs, a plusieurs egards: elle remplace des arguments analytiques par des arguments combinatoires; elle n'utilise pas la d ependance analytique des polyn^ omes par rapport au param etre et peut donc ^ etre appliqu ee aux espaces de param etres qui ne sont pas analytiques complexes; la d emonstration est aussi techniquement plus facile. Finalement, nous d emontrons quelques corollaires sur les com-posantes hyperboliques de l'ensemble Mandelbrot. En route, nous introduisons des partitions du plan dynamique et de l'espace des param etres qui sont int eressantes en elles-m^ emes, et nous in-terpr etons l'ensemble Mandelbrot comme un espace de param etres sym-boliques contenant des kneading sequences et des adresses internes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Parameter Rays of the Mandelbrot Set

We give a new proof that all external rays of the Mandelbrot set at rational angles land, and of the relation between the external angle of such a ray and the dynamics at the landing point. Our proof is different from the original one, given by Douady and Hubbard and refined by Lavaurs, in several ways: it replaces analytic arguments by combinatorial ones; it does not use complex analytic depen...

متن کامل

Rational External Rays of the Mandelbrot Set

We give a new proof that all external rays of the Mandelbrot set at rational angles land, and of the relation between the external angle of such a ray and the dynamics at the landing point. Our proof is di erent from the original one, given by Douady and Hubbard and re ned by Lavaurs, in several ways: it replaces analytic arguments by combinatorial ones; it does not use complex analytic depende...

متن کامل

External Rays and the Real Slice of the Mandelbrot Set

This paper investigates the set of angles of the parameter rays which land on the real slice [−2, 1/4] of the Mandelbrot set. We prove that this set has zero length but Hausdorff dimension 1. We obtain the corresponding results for the tuned images of the real slice. Applications of these estimates in the study of critically non-recurrent real quadratics as well as biaccessible points of quadra...

متن کامل

Topological Entropy of Quadratic Polynomials and Dimension of Sections of the Mandelbrot Set

A fundamental theme in holomorphic dynamics is that the local geometry of parameter space (e.g. the Mandelbrot set) near a parameter reflects the geometry of the Julia set, hence ultimately the dynamical properties, of the corresponding dynamical system. We establish a new instance of this phenomenon in terms of entropy. Indeed, we prove an “entropy formula” relating the entropy of a polynomial...

متن کامل

From Newton's method to exotic basins Part II: Bifurcation of the Mandelbrot-like sets

This is a continuation of the work Ba] dealing with the family of all cubic rational maps with two supersinks. We prove the existence of a parabolic bifurcation of the Mandelbrot-like sets in the parameter space. Starting from a Mandelbrot-like set in cubic Newton maps and changing parameters in a continuous way, we obtain a parabolic Mandelbrot-like set contained in the family of maps with a x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007